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Exercise 1. Determine whether the following sets of vectors are orthonormal (orthogonal and
unit length):

(a)

[
3/5
4/5

]
,

[
−4/5
3/5

]
.

(b)

[
1
−1

]
,

[
1
1

]
.

(c)

 2/3
−1/3
2/3

,
−1/3

2/3
2/3

,
 2/3

2/3
−1/3


(d)

[
a
a

]
,

[
a
−b

]
,

[
b
a

]
for a, b ∈ R.

(a) Dot product is zero, and (3/5)2 + (4/5)2 = 1, so yes.

(b) No, since |
[
1
−1

]
| = 2 ̸= 1.

(c) Yes, dot product between any pair is zero, and |

 2/3
2/3
−1/3

 | = 4/9+4/9+1/9 = 1 (and similarly

for the other two).

(d) These cannot be orthonormal since otherwise they would form an orthornomal basis for R2,
which is dimension 2 (and thus cannot have a basis of size 3). Alternatively for the first and
last vector to be orthogonal, we must have a = −b, but for the first and second vector to be

orthogonal we must have a = b, so b = −b and thus b = 0, and so for

[
a
a

]
and

[
a
0

]
to be

orthogonal we have to have a = 0 so they aren’t unit length.
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Exercise 2. Find a basis for W⊥, where

W = span



1
2
3
4

 ,


5
6
7
8




(Hint: How can we relate W⊥ to subspaces where we know how to find a basis?)

A vector v is in W⊥ if and only if v ·


1
2
3
4

 = 0 and v ·


5
6
7
8

 = 0 (to check if a vector is orthogonal to

a subspace, we only need to check that it is orthogonal to the basis vectors). However, notice that
if we let A be the matrix with the basis vectors as rows:

A =

[
1 2 3 4
5 6 7 8

]
that this is the same as asking that v is in kerA. Thus, we need to find a basis for kernel of A:[

1 2 3 4
5 6 7 8

]
→

[
1 2 3 4
0 −4 −8 −12

]
→

[
1 2 3 4
0 1 2 3

]
→

[
1 0 −1 −2
0 1 2 3

]
So letting x3 = t, x4 = s for t, s ∈ R, we see that x1 = x3 + 2x4 = t + 2s and x2 = −2x3 − 3x4 =
−2t− 3s, giving a general solution

x1

x2

x3

x4

 =


t+ 2s

−2t− 3s
t
s

 = t


1
−2
1
0

+ s


2
−3
0
1


And so we can see:

W⊥ = ker(A) = span




1
−2
1
0

 ,


2
−3
0
1



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Exercise 3. Find the orthogonal projection of

55
5

 onto the subspace

V = span


12
1

 ,

−2
1
1



Let’s first normalize the basis vectors for V so we get a basis of unit vectors:∥∥∥∥∥∥
12
1

∥∥∥∥∥∥ =
√
1 + 22 + 1 =

√
6

∥∥∥∥∥∥
−2

1
1

∥∥∥∥∥∥ =
√

(−2)2 + 1 + 1 =
√
6

V = span

 1√
6

12
1

 ,
1√
6

−2
1
1


Then the projection formula tells us:

projV

55
5

 =

55
5

 · 1√
6

12
1

 1√
6

12
1

+

55
5

 · 1√
6

−2
1
1

 1√
6

−2
1
1


=

(
20√
6

)
1√
6

12
1

+ (0)
1√
6

−2
1
1

 =
5

9

12
1


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Exercise 4. For each of the following vectors v⃗, find the decomposition v|| + v⊥ with respect to
the subspace

V = span



1
1
1
1

 ,


1
1
−1
−1

 ,


1
−1
−1
1




(a)


1
0
0
0



(b)


1
1
1
1



(c)


0
0
0
0


First we normalize all of our basis vectors to get

V = span




1
2
1
2
1
2
1
2

 ,


1
2
1
2

−1
2

−1
2

 ,


1
2

−1
2

−1
2

1
2




(a)

v|| = projV



1
0
0
0


 =

1

2


1
2
1
2
1
2
1
2

+
1

2


1
2
1
2

−1
2

−1
2

+
1

2


1
2

−1
2

−1
2

1
2

 =


3
4
1
4

−1
4

1
4



v⊥ = v − v|| =


1
4

−1
4

1
4

−1
4


(b)

v|| = projV



1
1
1
1


 = 2


1
2
1
2
1
2
1
2

+ 0


1
2
1
2

−1
2

−1
2

+ 0


1
2

−1
2

−1
2

1
2

 =


1
1
1
1


v⊥ = v − v|| = 0⃗
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(c)

v|| = projV



0
0
0
0


 = 0


1
2
1
2
1
2
1
2

+ 0


1
2
1
2

−1
2

−1
2

+ 0


1
2

−1
2

−1
2

1
2

 =


0
0
0
0


v⊥ = v − v|| = 0⃗
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Exercise 5. Let V = span{v⃗1, . . . , v⃗k} be a subspace of Rn where the vectors v⃗1, . . . , v⃗k give an
orthonormal basis for V .

(a) If w⃗ ∈ V , show that projV (w⃗) = w⃗.

(b) If w⃗ ∈ V ⊥, show that projV ⊥(w⃗) = 0.

(a) Since w⃗ ∈ V , we know that w⃗ = c1v⃗1 + · · · + ckv⃗k for some scalars c1, . . . , ck. Moreover, note
that since v⃗1, . . . , v⃗k form an orthonormal basis, we know that v⃗i · v⃗j = 0 for i ̸= j and v⃗i · v⃗j = 1
when i = j. Using this and the fact that the dot product distributes over sums, we can compute
the projection:

projV (w⃗) = (w⃗ · v⃗1)v⃗1 + · · ·+ (w⃗ · v⃗k)v⃗k = ((c1v⃗1 + · · ·+ ckv⃗k) · v⃗1)v⃗1 + · · ·+ ((c1v⃗1 + · · ·+ ckv⃗k) · v⃗k)v⃗k
= (c1v⃗1 · v⃗1 + · · ·+ ckv⃗k · v⃗1)v⃗1 + · · ·+ ((c1v⃗1 · v⃗k + · · ·+ ckv⃗k · v⃗k)v⃗k
= c1v⃗1 + · · ·+ ckv⃗k = w⃗

(b) If w⃗ ∈ V ⊥, then w⃗ must be orthogonal to every basis vector for W :

projV ⊥(w⃗) = (w⃗ · v⃗1)v⃗1 + · · ·+ (w⃗ · v⃗k)v⃗k = 0v⃗1 + · · ·+ 0v⃗k = 0⃗
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